Algoritmo genético do sistema de negociação


Negociação quantitativa.
Investimentos quantitativos e idéias comerciais, pesquisas e análises.
Sexta-feira, 16 de outubro de 2015.
Um software de algoritmo genético de código aberto (publicação de convidado)
Recentemente eu libertei o Genotick - um software de código aberto que pode criar e gerenciar um grupo de sistemas de negociação. No núcleo do Genotick encontra-se uma epifania: se é possível criar qualquer software com apenas um punhado de instruções de montagem, deve ser possível criar qualquer sistema de negociação com um punhado de instruções simples. Essas instruções simples e sem sentido tornam-se extremamente poderosas quando combinadas. As instruções corretas na ordem correta podem criar qualquer tipo de sistema mecânico: seguimento da tendência, retorno médio ou mesmo com base em dados fundamentais.

Algoritmo genético do sistema comercial
Criando um Sistema de Negociação no Laboratório de Sistemas de Negociação.
O Trading System Lab gerará automaticamente Sistemas de Negociação em qualquer mercado em poucos minutos, usando um programa de computador muito conhecido, conhecido como AIMGP (Indução Automática de Código de Máquina com Programação Genética). A criação de um sistema de negociação no Trade System Lab é realizada em 3 etapas fáceis. Primeiro, é executado um pré-processador simples que extrai e pré-processa automaticamente os dados necessários do mercado com o qual você deseja trabalhar. A TSL aceita dados CSI, MetaStock, AIQ, TradeStation, dados de Internet gratuitos, ASCII, TXT, CSV, CompuTrac, DowJones, FutureSource, TeleChart2000v3, TechTools, XML, Binário e Internet. Em segundo lugar, o gerador do sistema de negociação (GP) é executado por vários minutos, ou mais, para evoluir um novo sistema de negociação. Você pode usar seus próprios dados, padrões, indicadores, relações de inter-mercado ou dados fundamentais dentro do TSL. Terceiro, o Sistema de Negociação evoluído é formatado para produzir novos sinais do Sistema de Negociação dentro da TradeStation ™ ou muitas outras plataformas de negociação. O TSL escreverá automaticamente Easy Language, Java, Assembler, código C, código C # e WealthLab Script Language. O Trading System pode então ser negociado manualmente, negociado através de um corretor ou negociado automaticamente. Você pode criar o Trading System você mesmo ou podemos fazer isso por você. Então, você ou o seu corretor podem trocar o sistema manualmente ou automaticamente.
O Programa de Genética do Sistema de Negociação do Comércio contém vários recursos que reduzem a possibilidade de montagem da curva ou produzem um Sistema de Negociação que não continua a atuar no futuro. Em primeiro lugar, os Sistemas de Negociação evoluídos têm seu tamanho reduzido ao tamanho mais baixo possível através do que é chamado de Pressão Parsimonia, extraindo do conceito de comprimento mínimo da descrição. Assim, o sistema de negociação resultante é o mais simples possível e, em geral, acredita-se que, quanto mais simples for o Sistema de Negociação, melhor será no futuro. Em segundo lugar, a aleatoriedade é introduzida no processo evolutivo, o que reduz a possibilidade de encontrar soluções que sejam localmente, mas não globalmente otimizadas. A aleatoriedade é introduzida sobre não apenas as combinações do material genético utilizado nos Sistemas de Negociação evoluídos, mas em Parsimony Pressure, Mutation, Crossover e outros parâmetros de GP de nível superior. O teste de fora da amostra é realizado enquanto o treinamento está em andamento com informações estatísticas apresentadas nos testes de Teste de Amostra e Fora do Teste de Amostra. Os registros de execução são apresentados ao usuário para dados de treinamento, validação e fora de amostra. Bem comportado O desempenho fora da amostra pode ser indicativo de que o Sistema de Negociação está evoluindo com características robustas. A deterioração substancial no teste automático de Out of Sample em comparação com o teste In Sample pode implicar que a criação de um Sistema de Negociação robusto está em dúvida ou que o Terminal ou Conjunto de Entrada pode precisar ser alterado. Finalmente, o Conjunto de terminais é cuidadosamente escolhido, de modo a não prejudicar demais a seleção do material genético inicial em relação a qualquer viés ou sentimento de mercado específico.
O TSL não começa a ser executado com um Sistema de Negociação predefinido. Na verdade, apenas o conjunto de entradas e uma seleção de modos ou modos de entrada no mercado, para busca e atribuição automática de entrada, são feitos inicialmente. Um padrão ou comportamento indicador que pode ser pensado como uma situação de alta pode ser usado, descartado ou invertido dentro do GP. Nenhum padrão ou indicador é pré-atribuído a qualquer viés de movimento de mercado específico. Esta é uma saída radical do desenvolvimento do sistema de negociação gerado manualmente.
Um Sistema de Negociação é um conjunto lógico de instruções que dizem ao comerciante quando comprar ou vender um mercado específico. Essas instruções raramente exigem intervenção de um comerciante. Os Sistemas de Negociação podem ser negociados manualmente, observando as instruções de negociação em uma tela do computador, ou podem ser negociados, permitindo que o computador entre em negociações no mercado automaticamente. Ambos os métodos estão em uso generalizado hoje. Existem mais gerentes de dinheiro profissionais que se consideram comerciantes "sistemáticos ou mecânicos" do que aqueles que se consideram "discretos", e o desempenho dos gerentes de dinheiro sistemáticos é geralmente superior ao dos gestores de dinheiro discrecional. Estudos mostraram que as contas de negociação geralmente perdem dinheiro com mais freqüência se o cliente não estiver usando um Sistema de Negociação. O aumento significativo nos sistemas de negociação nos últimos 10 anos é evidente, especialmente nas corretora de commodities, no entanto, as empresas de corretagem de mercado de ações e títulos estão cada vez mais conscientes dos benefícios através do uso de sistemas de negociação e alguns começaram a oferecer sistemas de negociação para seus clientes de varejo.
A maioria dos gestores de fundos mútuos já estão usando algoritmos computacionais sofisticados para orientar suas decisões quanto ao "estoque quente a escolher" ou o que "rotação do setor" é favorável. Computadores e algoritmos tornaram-se mainstream no investimento e esperamos que essa tendência continue a ser mais jovem, os investidores mais experientes em informática continuam a permitir que partes do seu dinheiro sejam gerenciadas pelos sistemas de negociação para reduzir o risco e aumentar os retornos. As enormes perdas experimentadas pelos investidores que participam da compra e detenção de ações e fundos de investimento como o mercado de ações derretido nos últimos anos está promovendo esse movimento para uma abordagem mais disciplinada e lógica para investir no mercado de ações. O investidor médio percebe que ele ou ela atualmente permite que muitos aspectos de suas vidas e a vida de seus entes queridos sejam mantidos ou controlados por computadores, como os automóveis e as aeronaves que usamos para o transporte, o equipamento de diagnóstico médico que usamos para a manutenção da saúde, os controladores de aquecimento e refrigeração que usamos para controle de temperatura, as redes que usamos para informações baseadas na internet, até mesmo os jogos que jogamos para entretenimento. Por que, então, alguns investidores de varejo acreditam que podem "disparar do quadril" em suas decisões sobre "o que" estoque ou fundo mútuo para comprar ou vender e esperar ganhar dinheiro? Finalmente, o investidor médio ficou cauteloso com os conselhos e informações encaminhados por corretores, contadores, diretores corporativos e consultores financeiros sem escrúpulos.
Nos últimos 20 anos, matemáticos e desenvolvedores de software pesquisaram indicadores e padrões em mercados de ações e commodities buscando informações que possam apontar para a direção do mercado. Essas informações podem ser usadas para melhorar o desempenho dos Sistemas de Negociação. Geralmente, este processo de descoberta é realizado através de uma combinação de testes e erros e mais sofisticados "Mineração de Dados". Normalmente, o desenvolvedor levará semanas ou meses de crunching de números para produzir um potencial Sistema de Negociação. Muitas vezes, este sistema de negociação não funcionará bem quando usado no futuro devido ao que é chamado de "ajuste de curva". Ao longo dos anos, tem havido muitos sistemas de negociação (e empresas de desenvolvimento de sistemas de negociação) que vieram e foram, já que seus sistemas falharam na negociação ao vivo. O desenvolvimento de sistemas de negociação que continuam a atuar no futuro é difícil, mas não é impossível de realizar, embora nenhum desenvolvedor ético ou gerente de dinheiro dê uma garantia incondicional de que qualquer Sistema de Negociação ou, por isso, qualquer ação, vínculo ou fundo mútuo, continuará para produzir lucros no futuro para sempre.
O que demorou semanas ou meses para que o desenvolvedor do Trading System produza no passado pode agora ser produzido em minutos através do uso do Trading System Lab. O Trading System Lab é uma plataforma para a geração automática de sistemas de negociação e indicadores de negociação. A TSL faz uso de um mecanismo de programação genética de alta velocidade e produzirá sistemas de negociação a uma taxa de mais de 16 milhões de barras de sistema por segundo com base em 56 entradas. Note-se que apenas alguns insumos serão realmente usados ​​ou necessários, resultando em estruturas de estratégia geralmente simples evoluídas. Com aproximadamente 40.000 a 200.000 sistemas necessários para uma convergência, o tempo de convergência para qualquer conjunto de dados pode ser aproximado. Note-se que não estamos simplesmente executando uma otimização de força bruta de indicadores existentes que procuram parâmetros ótimos a partir dos quais usar em um Sistema de Negociação já estruturado. O Gerador do Sistema de Negociação começa em uma origem de ponto zero, não fazendo suposições sobre o movimento do mercado no futuro e então "evolui" Sistemas de Negociação a uma taxa muito alta combinando informações presentes no mercado e formulando novos filtros, funções, condições e relacionamentos à medida que progride para um sistema de negociação "geneticamente modificado". O resultado é que um excelente sistema de negociação pode ser gerado em poucos minutos em 20-30 anos de dados de mercado diários em praticamente qualquer mercado.
Ao longo dos últimos anos, houve várias abordagens para a otimização do Sistema de Negociação que empregam o Algoritmo Genético menos poderoso. Os Programas Genéticos (GP's) são superiores aos Algoritmos Genéticos (GA's) por vários motivos. Primeiro, os GPs convergem em uma solução a uma taxa exponencial (muito rápido e ficando mais rápido), enquanto os Algoritmos Genéticos convergem em uma taxa linear (muito mais lenta e não está ficando mais rápida). Em segundo lugar, os GPs realmente geram o código da máquina do Sistema de Negociação que combinava o material genético (indicadores, padrões, dados inter-mercado) de maneiras únicas. Essas combinações únicas podem não ser intuitivamente óbvias e não requerem definições iniciais pelo desenvolvedor do sistema. As relações matemáticas únicas criadas podem se tornar novos indicadores ou variantes na Análise Técnica, ainda não desenvolvidas ou descobertas. GA, por outro lado, simplesmente procure soluções ótimas à medida que progridem no intervalo de parâmetros; eles não descobrem novas relações matemáticas e não escrevem seu próprio código de Sistema de Negociação. O código do sistema comercial do GP de vários comprimentos, usando genomas de comprimento variável, modificará o comprimento do Sistema de Negociação através do chamado cruzamento não homólogo e descartará completamente um indicador ou padrão que não contribua para a eficiência do Sistema de Negociação. O uso de GA apenas blocos de instruções de tamanho fixo, fazendo uso de apenas cruzamentos homólogos e não produzem código de código de troca de comprimento variável, nem descartarão um indicador ou padrão ineficiente tão prontamente como um GP. Finalmente, os Programas Genéticos são um avanço recente no domínio da aprendizagem por máquinas, enquanto os Algoritmos Genéticos foram descobertos há 30 anos. Os Programas Genéticos incluem todas as principais funcionalidades dos Algoritmos Genéticos; crossover, reprodução, mutação e fitness, no entanto GPs incluem características muito mais rápidas e robustas, tornando a GP a melhor opção para produzir Trading Systems. O GP empregado no Trading System Generator da TSL é o GP mais rápido atualmente disponível e não está disponível em nenhum outro software de mercado financeiro no mundo.
O Algoritmo de Programação Genética, o Simulador de Negociação e os Motores Fitness utilizados na TSL levaram 8 anos para produzir.
O Trading System Lab é o resultado de anos de trabalho árduo de uma equipe de engenheiros, cientistas, programadores e comerciantes, e acreditamos que representa a tecnologia mais avançada disponível hoje para comercializar os mercados.

Algoritmo genético do sistema comercial
Se você ainda procura uma vantagem nos mercados, os sistemas de negociação automatizada são a melhor maneira de obtê-lo. Saber mais.
Copyright (c) 2010 Adaptrade Software. Todos os direitos reservados.
OS RESULTADOS DE DESEMPENHO HIPOTÉTICOS OU SIMULADOS TÊM CERTAS LIMITAÇÕES INERENTES. DESEJO UM REGISTO DE DESEMPENHO REAL, OS RESULTADOS SIMULADOS NÃO REPRESENTAM A NEGOCIAÇÃO REAL. TAMBÉM, DESDE QUE OS NEGÓCIOS NÃO SEJAM REALMENTE EXECUTOS, OS RESULTADOS PODEM TENER SOB OU COMENTÁRIOS COMPLEMENTARES PARA O IMPACTO, SE HAVER, DE CERTOS FATORES DE MERCADO, TAL COMO FALTA DE LIQUIDEZ. PROGRAMAS DE NEGOCIAÇÃO SIMULADOS EM GERAL SÃO TAMBÉM SUJEITOS AO FATO QUE ESTÃO DESIGNADOS COM O BENEFÍCIO DE HINDSIGHT. NENHUMA REPRESENTAÇÃO ESTÁ FAZENDO QUE QUALQUER CONTA VÁ OU SEJA PROBABILITÁVEL PARA ALCANÇAR LUCROS OU PERDAS SIMILARES ÀOS MOSTRADOS.
EasyLanguage e TradeStation são marcas registradas da TradeStation Technologies, Inc.
Uma das maiores tendências no comércio varejista na última década foi o aumento da popularidade do comércio automatizado. Neste tipo de negociação, também conhecida como execução automatizada de ordens, os sinais de compra e venda gerados por um sistema de negociação são executados automaticamente por uma plataforma conectada à conta corretora do comerciante. Isso permite o comércio livre de mãos, o que permite uma execução mais rápida, menos erros e a capacidade de trocar prazos mais curtos com estratégias de maior freqüência.
O algoritmo básico para a construção de sistemas de negociação usando a geração automática de código é mostrado abaixo na Fig. 1. Começa com um método para combinar diferentes elementos da estratégia de negociação. Esses elementos podem incluir vários indicadores técnicos, como médias móveis, estocásticos e assim por diante; diferentes tipos de pedidos de entrada e saída; e condições lógicas para entrar e sair do mercado.
Figura 1. Algoritmo básico para construção de estratégia automatizada.
Depois que os diferentes elementos são combinados em uma estratégia coerente, ele pode ser avaliado no mercado ou mercados de interesse. Isso requer dados de mercado - preços, volume, interesse aberto, etc. - para cada mercado. De um modo geral, você também teria um conjunto de objetivos de construção para ajudar a classificar ou marcar cada estratégia. Exemplos de objetivos de construção incluem várias medidas de desempenho, como o lucro líquido, redução, porcentagem de vencedores, fator de lucro e assim por diante. Estes podem ser declarados como requisitos mínimos, como um fator de lucro de pelo menos 2.0 ou como objetivos para maximizar, como maximizar o lucro líquido.
Base teórica da geração automática de código.
Conforme descrito acima, construir um sistema comercial usando a geração automática de código é essencialmente um problema de otimização. A combinação de elementos estratégicos que maximizam os objetivos de construção é tomada como a estratégia final. Alguns comerciantes argumentariam que os sistemas comerciais deveriam ser construídos com base em uma hipótese de comportamento ou ação do mercado. Se você tem uma boa hipótese de como os mercados funcionam, uma estratégia pode ser construída em torno dessa hipótese e testada. Se isso funciona, ele apóia a hipótese e justifica a negociação da estratégia.
Gerador de código de sistema padrão para TradeStation.
Esta seção descreve uma abordagem ad hoc para a geração automática de código em que um sistema comercial para a TradeStation gera automaticamente outros sistemas de negociação baseados em padrões para a TradeStation. O sistema AutoSystemGen procura um conjunto de regras de negociação, juntamente com os valores de parâmetros associados, que atendem a um conjunto específico de requisitos de desempenho.
Embora quase qualquer tipo de indicador ou lógica de negociação possa ser incluído no gerador do sistema comercial descrito aqui, para manter as coisas bastante simples, as regras dos sistemas gerados serão restritas aos padrões de preços. Cada regra de entrada de um sistema de negociação gerado terá a seguinte forma:
A chave para este processo é encontrar sistemas de negociação de candidatos. Um sistema pode consistir de uma e dez regras do formulário mostrado acima. As negociações são introduzidas no mercado se todas as regras forem verdadeiras, e os negócios são encerrados um certo número de barras mais tarde. Se isso fosse codificado como um sistema TradeStation tradicional, com um máximo de 10 regras, haveria 52 entradas. Isso faria para uma estratégia pesada.
O código para o sistema AutoSystemGen e suas funções relacionadas está disponível no Breakout Futures (breakoutfutures /) na página Free Downloads.
Por exemplo, considere o mercado de futuros de obrigações de tesouraria de 30 anos (símbolo US. P na TradeStation 8). O AutoSystemGen foi otimizado nos últimos 20 anos de preços de T-bond com a entrada OptStep aumentada de 1 para 10000. Isso significa que o sistema avaliou 10.000 sistemas de negociação diferentes. A otimização foi executada duas vezes, uma vez por trades longos e uma vez para negociações curtas. Foram utilizados os seguintes requisitos de desempenho: lucro líquido de pelo menos US $ 30.000, o pior caso de desconto no máximo de US $ 7500, pelo menos 200 negócios, porcentagem rentável de pelo menos 50% e fator de lucro de pelo menos 1,2. Em um computador dual core com o Vista, levou aproximadamente 10 minutos para executar cada otimização (10.000 sistemas por otimização).
Sistema 2332, US. P, 17/9/2007 12:23:00, Long Trades.
Lucro líquido = 53562.50, DD máximo = -7381.25, Num Trades = 250, Percentual de vitórias = 56.80, Prof factor = 1.631.
Var: EntNext (falso);
EntNext = Open [2] & gt; = Low [16] e.
Fechar [14] & lt; = Low [6] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 5771, US. P, 17/9/2007 12:27:00, Long Trades.
Lucro líquido = 42145,00, DD máximo = -5733.75, Num Trades = 207, Percentagem de vitórias = 57,00, factor Prof = 1,631.
Var: EntNext (falso);
EntNext = High [7] & gt; = Low [19] e.
Fechar [20] & gt; = Fechar [5] e.
High [18] & gt; = Low [2] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 7622, ​​EUA. P, 9/17/2007 12:29:00, Long Trades.
Lucro líquido = 59348.75, Max DD = -7222.50, Num Trades = 208, Percentual de vitórias = 60.58, Fator Prof. = 1.924.
Var: EntNext (falso);
EntNext = Low [2] & lt; = High [9] and.
Abra [11] & gt; = Abrir [18] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 3 então.
Venda o próximo bar no mercado;
Sistema 7718, US. P, 17/9/2007 12:29:00, Long Trades.
Lucro líquido = 35526.25, DD máximo = -6936.25, Num Trades = 292, Percentual de vitórias = 56.85, factor Prof = 1.418.
Var: EntNext (falso);
EntNext = Fechar [3] & gt; = High [19] and.
High [6] & lt; = Open [10] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 1 então.
Venda o próximo bar no mercado;
Sistema 6160, US. P, 17/9/2007 12:42:00, Short Trades.
Lucro líquido = 31277,50, DD máximo = -6846,25, Num Trades = 369, Percentual de vitórias = 51,76, Fator Prof. = 1,297.
Var: EntNext (falso);
EntNext = High [9] & gt; = Low [6] and.
Fechar [15] & gt; = Alto [8] e.
High [7] & lt; = Low [20] e.
Se EntNext então.
Venda curta barra seguinte no mercado;
Se BarsSinceEntry = 1 então.
Compre para cobrir a próxima barra no mercado;
A listagem para cada sistema inclui o número do sistema (correspondente à entrada OptStep), o símbolo do mercado, a data atual e se o sistema é apenas longo ou curto. A próxima linha contém algumas estatísticas de desempenho resumidas para ajudar na avaliação de cada sistema. Finalmente, o código do sistema é mostrado. Para avaliar os sistemas na TradeStation, o código entre as duas linhas de comentários () pode ser copiado e colado em uma estratégia no TradeStation e, em seguida, executado na janela do gráfico.
O último sistema no arquivo de saída é para um sistema de apenas curto-som (# 6160). Quando guardado na TradeStation como uma estratégia e aplicado ao mesmo gráfico de T-bond, a seguinte curva de equidade foi produzida:
Figura 3. Sistema de apenas curto prazo para títulos T, nos últimos 20 anos, com US $ 15 por negócio deduzido para custos de negociação, gerado pelo sistema AutoSystemGen.
Programação genética para geração automática de código.
A abordagem ad hoc descrita na seção anterior é simples, mas tem duas limitações: (1) as estratégias geradas aleatoriamente não convergem para os objetivos de construção e (2) o modelo do sistema de padrões é difícil de generalizar para estratégias mais complexas . Isso sugere que uma abordagem mais sofisticada seja necessária.
Um método para a geração automática de código que aborda essas duas preocupações é chamado de programação genética (GP), 1 que pertence a uma classe de técnicas chamadas algoritmos evolutivos. Algoritmos evolutivos e GP em particular foram desenvolvidos por pesquisadores em inteligência artificial baseados nos conceitos biológicos de reprodução e evolução. Um algoritmo GP "evolui" uma população de estratégias de negociação de uma população inicial de membros gerados aleatoriamente. Os membros da população competem uns contra os outros com base na sua "aptidão". Os membros do ajuste são selecionados como "pais" para produzir um novo membro da população, que substitui um membro mais fraco (menos adequado).
Reduz a necessidade de conhecimento de indicadores técnicos e design de estratégias. O algoritmo GP seleciona as regras de negociação individuais, indicadores e outros elementos da estratégia para você.
O processo de construção da regra permite uma complexidade considerável, incluindo regras comerciais não-lineares.
O processo GP elimina os elementos mais laboriosos e tediosos do processo de desenvolvimento da estratégia tradicional; ou seja, surgir uma nova idéia comercial, programá-la, verificar o código, testar a estratégia, modificar o código e repetir. Isso é feito automaticamente no GP.
O processo de GP é imparcial. Considerando que a maioria dos comerciantes desenvolveu vieses para ou contra indicadores específicos e / ou lógica de negociação, o GP é guiado apenas pelo que funciona.
Ao incorporar uma semântica de regras de negociação adequada, o processo de GP pode ser projetado para produzir regras de negociação logicamente corretas e código sem erros.
O processo GP geralmente produz resultados que não são únicos, mas não óbvios. Em muitos casos, essas gemas escondidas seriam quase impossíveis de encontrar de outra maneira.
Ao automatizar o processo de compilação, o tempo necessário para desenvolver uma estratégia viável pode ser reduzido de semanas ou meses a uma questão de minutos em alguns casos, dependendo do comprimento do arquivo de dados de preço de entrada e outras configurações de compilação.
A programação genética tem sido usada com sucesso em diversos campos, incluindo processamento de sinal e imagem, controle de processo, bioinformática, modelagem de dados, geração de código de programação, jogos de computador e modelagem econômica; veja, por exemplo, Poli et al. 2 Uma visão geral do uso de GP em finanças é fornecida por Chen. 3 Colin 4 foi um dos primeiros a explicar como usar o GP para otimizar combinações de regras para uma estratégia de negociação.
J. Koza. Programação genética. O MIT Press, Cambridge, MA. 1992.
R. Poli, W. B. Langdon e N. F. McPhee. Um guia de campo para programação genética. Publicado através de lulu e disponível gratuitamente em gp-field-guide. org. uk, 2008. (Com contribuições de J. R. Koza).
Shu-Heng Chen (Editor). Algoritmos genéticos e programação genética em finanças computacionais. Kluwer Academic Publishers, Norwell, MA. 2002.
A. Colin. Algoritmos genéticos para modelagem financeira, Trading on the Edge. 1994, páginas 165-168. John Wiley & amp; Sons, Inc. Nova York.
Risto Karjalainen. Evolução das regras de negociação técnica para futuros S & amp; P 500, Regras de Negociação Avançadas, 2002, Páginas 345-366. Elsevier Science, Oxford, Reino Unido.
Jean-Yves Potvin, Patrick Soriano, Maxime Vallee. Gerando regras de negociação nos mercados de ações com programação genética. Computadores e Pesquisa de operações, Volume 31, edição 7, junho de 2004, páginas 1033-1047.
Massimiliano Kaucic. Investimento utilizando métodos evolutivos de aprendizagem e regras técnicas. European Journal of Operational Research, volume 207, edição 3, 16 de dezembro de 2010, páginas 1717-1727.
Algoritmo de construção usando programação genética.
Expandindo o algoritmo de compilação apresentado anteriormente (ver Fig. 1), um algoritmo mais detalhado é ilustrado abaixo na Fig. 4 com base na programação genética. As caixas sombreadas de cinza representam os dados de entrada, que incluem os dados de preços para o (s) mercado (s) de interesse, indicadores e tipos de pedidos no chamado conjunto de compilação e as opções e critérios de desempenho (objetivos de construção) selecionados pelo do utilizador.
Figura 4. Algoritmo de compilação para geração automática de código com programação genética.
O processo GP pode ser usado para desenvolver simultaneamente dois elementos de estratégia essenciais: condições de entrada e pedidos de entrada e saída. As condições de entrada são tipicamente representadas como estruturas de árvores, como mostrado abaixo na Fig. 5.
A chave para a evolução das ordens de entrada e saída usando programação genética é representar os diferentes tipos de pedidos de forma generalizada. Por exemplo, parar e limitar os preços de entrada podem ser representados da seguinte forma:
Embora a programação genética seja capaz de gerar estratégias de negociação com uma variedade considerável, é necessário começar com uma estrutura generalizada para as estratégias a serem seguidas. A estrutura de estratégia mostrada abaixo em pseudo-código fornece uma estrutura para estratégias de construção com base em condições de entrada e tipos de pedidos como os discutidos acima:
Entradas: N1, N2, N3, ...
Se a posição for plana e LongEntryCondition for verdade, então.
Ordem de entrada longa ...
Inicialize as ordens de saída longas, conforme necessário ...
Se a posição for plana e ShortEntryCondition for verdade, então.
Ordem de entrada curta ...
Inicialize ordens de saída curtas, conforme necessário ...
Se a posição é longa então.
Ordem de saída longa 1 ...
Ordem de saída longa 2 ...
Se a posição for curta, então.
Ordem de saída curta 1 ...
Ordem de saída curta 2 ...
[Saída opcional de fim de dia]
As estratégias começam com a lista de insumos. É fornecida uma entrada para qualquer parâmetro do indicador, comprimento do look-back do padrão de preços e quaisquer parâmetros exigidos pelas ordens de entrada e saída, como o comprimento de look-back para o ATR.
Para ilustrar o uso de programação genética para a geração automática de código na construção de estratégias, o programa Adaptrade Builder foi administrado em barras diárias de um mercado de futuros de índices de ações para uma pequena população e um número limitado de gerações. As métricas de desempenho escolhidas para orientar o processo foram o lucro líquido, o número de trades, o coeficiente de correlação, a significância estatística e a relação retorno / redução. Alvos específicos foram definidos para o número de negociações e a relação retorno / retirada. As outras métricas selecionadas foram maximizadas. A função de fitness foi uma média ponderada de termos para cada métrica.
Figura 6. Percentagem de membros da população com lucro líquido fora da amostra superior a US $ 1.000.
Da mesma forma, o lucro líquido médio da OOS aumentou após cinco e dez gerações, como mostrado na Figura 7. Observe que esses resultados são para o lucro líquido da OOS. Por definição, os dados fora da amostra não são usados ​​na compilação, então os resultados da OOS são imparciais; eles não se beneficiam de retrospectiva. Isso implica que o processo GP não só tende a melhorar os resultados na amostra em sucessivas gerações, o que é um efeito direto do algoritmo GP, mas os resultados da OOS também tendem a melhorar à medida que as estratégias são desenvolvidas. Isso indica uma compilação de alta qualidade.
Código de Estratégia EasyLanguage para a TradeStation.
Membro da população: 46.
Criado por: Adaptrade Builder versão 1.1.0.0.
Criado: 19/10/2010 2:19:52 PM.
Código do TradeStation para TS 6 ou posterior.
Arquivo de preço: C: \ TestData. txt.
Var: EntCondL (falso),
EntCondL = (Maior (Volume, NL1) & gt; = Menor (Volume, NL2)) ou (Volume & lt; Média (Volume, NL3));
Se MarketPosition = 0 e EntCondL, em seguida, comece.
Compre a próxima barra na XAverage (L, NBarEnL1) + EntFrL * ATREnL parar;
Se MarketPosition = 0 e EntCondS, em seguida, comece.
Vender curto barra seguinte no Mais alto (H, NBarEnS1) - EntFrS * AbsValue (Menor (L, NBarEnS2) - Menor (H, NBarEnS3)) parar;
SStop = Power (10, 10);
Se MarketPosition & gt; 0 então comece.
Se BarsSinceEntry & gt; = NBarExL então.
Venda o próximo bar no mercado;
Venda o próximo bar no EntryPrice + TargFrL * ATRTargL limite;
Se MarketPosition & lt; 0 então comece.
Se EntryPrice - C & gt; ATRFrTrailS * ATRTrailS então.
Se STrailOn então começar.
NewSStop = EntryPrice - TrailPctS * (EntryPrice - C) / 100 .;
SStop = MinList (SStop, NewSStop);
Se BarsSinceEntry & gt; = NBarExS então.
Compre para cobrir a próxima barra no mercado;
Se STrailOn então.
Compre para cobrir a próxima barra na parada SStop;
Construir sistemas de negociação através da geração automática de código é um tipo de otimização. A maioria dos comerciantes sistemáticos provavelmente está familiarizado com a otimização de parâmetros, em que as entradas para uma estratégia são otimizadas. Ao contrário da otimização de parâmetros, a geração automática de código otimiza a lógica de negociação da estratégia. No entanto, o risco de sobre-otimização, ou "excesso de ajuste", também é uma preocupação para a geração automática de código, assim como é para a otimização de parâmetros.
Para obter informações sobre software para estratégias de negociação de construção usando programação genética, clique aqui.
Se você quiser ser informado de novos desenvolvimentos, novidades e ofertas especiais do Adaptrade Software, por favor, junte-se à nossa lista. Obrigado.
Copyright © 2004-2015 Adaptrade Software. Todos os direitos reservados.

Um sistema de negociação Forex baseado em um algoritmo genético.
Luís Mendes Pedro Godinho Joana Dias autor.
Neste artigo, será descrito um algoritmo genético que visa otimizar um conjunto de regras que constituem um sistema de negociação para o mercado Forex. Cada indivíduo na população representa um conjunto de dez regras comerciais comerciais (cinco para entrar em uma posição e cinco outras para sair). Essas regras têm 31 parâmetros no total, que correspondem aos genes dos indivíduos. A população evoluirá em um determinado ambiente, definido por uma série temporal de um par de moedas específico. A adequação de um determinado indivíduo representa o quão bem ele conseguiu se adaptar ao meio ambiente e é calculado aplicando as regras correspondentes às séries temporais e calculando a relação entre o lucro e a redução máxima (a relação Stirling) . Dois pares de moedas foram utilizados: EUR / USD e GBP / USD. Foram utilizados dados diferentes para a evolução da população e para testar os melhores indivíduos. Os resultados alcançados pelo sistema são discutidos. Os melhores indivíduos conseguem alcançar resultados muito bons nas séries de treinamento. Na série de testes, as estratégias desenvolvidas mostram alguma dificuldade em obter resultados positivos, se você levar em consideração os custos de transação. Se você ignorar os custos de transação, os resultados são principalmente positivos, mostrando que os melhores indivíduos possuem alguma capacidade de previsão.
Notas.
Agradecimentos.
Gostaríamos de agradecer os árbitros anônimos, cujos comentários nos ajudaram a melhorar este artigo.
Referências.
Informações sobre direitos autorais.
Autores e afiliações.
Luís Mendes 1 Pedro Godinho 2 Joana Dias 3 autor 1. Faculdade de Economia Universidade de Coimbra Coimbra Portugal 2. Faculdade de Economia e GEMF Universidade de Coimbra Coimbra Portugal 3. Faculdade de Economia e Inesc-Coimbra Universidade de Coimbra Coimbra Portugal.
Sobre este artigo.
Recomendações personalizadas.
Cite o artigo.
.RIS Papers Reference Manager RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
Compartilhe o artigo.
Acesso ilimitado ao artigo completo Download instantâneo Inclua o imposto de vendas local, se aplicável.
Cite o artigo.
.RIS Papers Reference Manager RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
Compartilhe o artigo.
Mais de 10 milhões de documentos científicos ao seu alcance.
Switch Edition.
&cópia de; 2017 Springer International Publishing AG. Parte de Springer Nature.

Comments